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Introduction

• The word “fuzzy” means “vaguness (ambiguity)”.
• Fuzziness occurs when the boundary of a piece of 

information is not clear-cut.
• Fuzzy sets - 1965 Lotfi Zadeh as an extension of classical 

notation set.
• Classical set theory allows the membership of the elements 

in the set in binary terms.
• Fuzzy set theory permits membership function valued in 

the interval [0,1].



Introduction

Example:
Words like young, tall, good or high are fuzzy.
• There is no single quantitative value which defines the term 

young.
• For some people, age 25 is young, and for others, age 35 is 

young.
• The concept young has no clean boundary.
• Age 35 has some possibility of being young and usually 

depends on the context in which it is being considered.

Fuzzy set theory is an extension of classical set theory where 
elements have degree of membership.



Introduction

• In real world, there exist much fuzzy knowledge (i.e. vague, 
uncertain inexact etc).

• Human thinking and reasoning  (analysis, logic, 
interpretation) frequently involved fuzzy information.

• Human can give satisfactory answers, which are probably 
true.

• Our systems are unable to answer many question because 
the systems are designed based upon classical set theory 
(Unreliable and incomplete).

• We want, our system should be able to cope with 
unreliable and incomplete information.

• Fuzzy system have been provide solution.



Introduction

Classical set theory Fuzzy set theory

• Classes of objects with sharp 
boundaries.

• Classes of objects with un-
sharp boundaries. 

• A classical set is defined by 
crisp(exact) boundaries, i.e., 
there is no  uncertainty about 
the location of the set 
boundaries.

• A fuzzy set is defined by its 
ambiguous boundaries, i.e., 
there exists uncertainty about 
the location of the set 
boundaries.

•Widely used in digital system 
design

• Used in fuzzy controllers.



Introduction (Continue)

Is water 
colorless?

Is Ram Honest?

Crisp

Yes! (1)

No! (0)

Fuzzy

Extremely Honest
(1)

Very Honest
(0.80)

Honest at time
(0.40)

Extremely  dishonest 
(0.0)

Fuzzy vs crips

Example



Classical set theory

• A Set is any well defined collection of objects.
• An object in a set is called an element or member of that 

set.
• Sets are defined by a simple statement, 
• Describing whether a particular element having a certain 

property  belongs to that particular set.

A = {a1,a2,a3,……,an}

• If the elements ai (i = 1,2,3,….,n) of a set A are subset of 
universal set X, then set A can be represented for all 
elements x ϵ X by its characteristics function

µA (x) = 1 if x ϵ X otherwise 0



Operations on classical set theory

Union: the union of two sets A and B is given as

A U B = { x | x є A or x є  B }

Intersection: the intersection of two sets A and B is given as

A ∩ B = { x | x є A and x є  B }

Complement: It is denoted by Ã and is defined as

Ã = { x | x does not belongs A and x є  X }



Fuzzy Sets

• Fuzzy sets theory is an extension of classical set theory.
• Elements have varying degree of membership. A logic based 

on two truth values,
•  True and False  is sometimes insufficient when describing 

human reasoning.
• Fuzzy Logic uses the whole interval between 0 (false) and 1 

(true) to describe human reasoning.
• A Fuzzy Set is any set that allows its members to have 

different degree of membership, called  membership 
function,  having interval [0,1].



Fuzzy Sets

• Fuzzy Logic is derived from fuzzy set theory
• Many degree of membership (between 0 to 1) are allowed.

• Thus a membership function µA
(x)  is associated with a fuzzy 

sets Ã such that the function maps every element of 
universe of discourse X to the interval [0,1].

• The mapping is written as: µÃ(x): X  [0,1].

• Fuzzy Logic is capable of handing inherently imprecise 
(vague or inexact or rough or inaccurate) concepts



Fuzzy Sets

• Fuzzy set is defined as follows:

• If X is an universe of discourse and x is a particular element 
of X, then a fuzzy set A defined on X and can be written as a 
collection of ordered pairs

A = {(x, µÃ(x)), x є X }

 



Fuzzy Sets (Continue)

Example

• Let X = {g1, g2, g3, g4, g5} be the reference set of students.

• Let Ã be the fuzzy set of “smart” students, where  “smart” is 
fuzzy term.

Ã = {(g1,0.4)(g2,0.5)(g3,1)(g4,0.9)(g5,0.8)}

Here Ã indicates that the smartness of g1 is 0.4 and so on



Fuzzy Sets (Continue)

Membership Function
• The membership function fully defines the fuzzy set
• A membership function provides a measure of the degree of 

similarity of an element to a fuzzy set
Membership functions can 
– either be chosen by the user arbitrarily, based on the 

user’s experience (MF chosen by two users could be 
different depending upon their experiences, 
perspectives, etc.)

– Or be designed using machine learning methods (e.g., 
artificial neural networks, genetic algorithms, etc.)



Fuzzy Sets (Continue)

There are different shapes of membership functions; 
• Triangular,
• Trapezoidal,
• Gaussian, etc



Fuzzy Sets (Continue)

• Triangular membership function
A triangular membership function is specified by three parameters {a, b, c}

a, b and c represent the x coordinates of the three vertices of µA(x) in a 
fuzzy set A (a: lower boundary and c: upper boundary where 
membership degree is zero, b: the centre where membership degree is 
1)
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Fuzzy Sets (Continue)

• Trapezoid membership function
• A trapezoidal membership function is specified by four 

parameters {a, b, c, d} as follows:
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• Gaussian membership function

– c: centre
– s: width
– m: fuzzification factor (e.g., m=2)
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Fuzzy Set Operation

Given X to be the universe of discourse and Ã and  to Ḃ
be fuzzy sets with µA(x) and µB(x) are their respective 
membership function, the fuzzy set operations are as 
follows:

Union:

µA U B(x) = max (µA(x), µB(x))

Intersection:

µA ∩ B(x) = min (µA(x), µB(x))

Complement:

µA (x) =1- µA(x)



Fuzzy Set Operation (Continue)

Example:

A = {(x1,0.5),(x2,0.7),(x3,0)}  B = {(x1,0.8),(x2,0.2),(x3,1)}

Union:

A U B = {(x1,0.8),(x2,0.7),(x3,1)}

Because

µA U B(x1) = max (µA(x1), µB(x1))

       = max(0.5,0.8)

       = 0.8

                        µA U B(x2) = 0.7  and µA U B(x3) = 1



Fuzzy Set Operation (Continue)

Example:

A = {(x1,0.5),(x2,0.7),(x3,0)}  B = {(x1,0.8),(x2,0.2),(x3,1)}

Intersection:

A ∩ B = {(x1,0.5),(x2,0.2),(x3,0)}

Because

µA ∩ B(x1) = min (µA(x1), µB(x1))

       = max(0.5,0.8)

       = 0.5

                        µA ∩ B(x2) = 0.2  and µA ∩ B(x3) = 0



Fuzzy Set Operation (Continue)

Example:

A = {(x1,0.5),(x2,0.7),(x3,0)}

Complement:

Ac = {(x1,0.5),(x2,0.3),(x3,1)}

Because

µA (x1) =1- µA(x1)

       = 1 – 0.5 

       = 0.5

                        µA (x2) = 0.3  and µA (x3) = 1



• Support(A) is set of all points x in X such that

 {(x∣ µA(x) > 0 }

• core(A) is set of all points x in X such that

 {(x∣ µA(x) =1 }

• Fuzzy set whose support is a single point in X 
with µA(x) =1 is called fuzzy singleton
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Linguistic variable, linguistic term

• Linguistic variable: A linguistic variable  is a 
variable whose values are sentences in a 
natural or artificial language. 

• For example, the values of the fuzzy variable 
height could be tall, very tall, very very tall, 
somewhat tall, not very tall, tall but not very 
tall, quite tall, more or less tall.

• Tall is a linguistic value or primary term



• If age is a linguistic variable then its term set is
• T(age) = { young, not young, very young, not 

very young,…… middle aged, not middle aged,
… old, not old, very old, more or less old, not 
very old,…not very young and not very old,…}.



Fuzzy Rules 

• Fuzzy rules are useful for modeling human 
thinking, perception (Opinion,view) and 
judgment.

•  A fuzzy if-then rule is of the form “If x is A then y 
is B” where A and B are linguistic values defined 
by fuzzy sets on universes of discourse X and Y, 
respectively. 

• “x is A” is called antecedent and “y is B” is called 
consequent. 



Examples, for such a rule are

•  If pressure is high, then volume is small.

•  If the road is slippery, then driving is 
dangerous.

•  If the fruit  is ripe, then it is soft.



Binary fuzzy relation

• A binary fuzzy relation is a fuzzy set in X × Y 
which maps each element in X × Y to a 
membership value between 0 and 1. 

• If X and Y are two universes of discourse, then 

• R = {((x,y), µR(x, y)) | (x,y) Є  X × Y } is a binary 
fuzzy relation in X × Y.

• X × Y indicates cartesian product of X and Y



• The fuzzy rule “If x is A then y is B” may be 
abbreviated as A→ B and is interpreted as      A × B.

•  A fuzzy if then rule may be defined (Mamdani) as a 
binary fuzzy relation R on the product space X × Y.

• R = A→ B = A × B =∫X×Y µA(x) T-norm µB(y)/ (x,y).



expert systems: Fuzzy inference

 Mamdani fuzzy inference

 Sugeno fuzzy inference



Fuzzy inference 

• The most commonly used fuzzy inference 
technique     is the so-called Mamdani method. 
In 1975,     

• Professor Ebrahim Mamdani of London 
University built one of the first fuzzy systems

• To control a steam engine and boiler 
combination. 

• He applied a set of fuzzy rules supplied by 
experienced human operators.. 



Fuzzy inference 

Mamdani fuzzy inference 
• The Mamdani-style fuzzy inference process is    

performed in four steps: 

• Fuzzification of the input variables,

• Rule evaluation;

• Aggregation of the rule outputs, and finally

• Defuzzification.



Fuzzy inference 
We examine a simple two-input one-output problem that 
includes three rules:
Rule 1:
IF x is A3  
OR y is B1 
THEN z is C1

Rule 1:
IF  project_funding is enough
OR project_staffing is small 
THEN risk is low

Rule 2:
IF x is A2
OR y is B2 
THEN z is C2

Rule 2:
IF  project_funding is medium
OR project_staffing is large
THEN risk is normal

Rule 3:
IF x is A1
THEN z is C3

Rule 3:
IF  project_funding is notenough
THEN risk is high



Step 1: Fuzzification

The first step is to take the crisp inputs, x1 and y1         
                                      (project funding and project 
staffing), and determine                                 the degree 
to which these inputs belong to each of the 
appropriate fuzzy sets.

Crisp Input
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µ(x = A1) = 0.5
µ(x = A2) = 0.2

µ(y = B1) = 0.1
µ(y = B2) = 0.7



Step 2: Rule Evaluation

The  second  step  is  to  take  the  fuzzified  inputs,       
µ(x=A1) = 0.5, 

µ(x=A2) = 0.2, 

µ(y=B1) = 0.1 and µ(y=B 2) = 0.7, 

and apply them to the antecedents of the fuzzy     rules.

If a given fuzzy rule has multiple antecedents,      the fuzzy 
operator (AND or OR) is used to obtain a    single number 
that represents the result of the    antecedent evaluation. 
This number (the truth value)        is then applied to the 
consequent membership       function.



To evaluate the disjunction of the rule antecedents,    
we use the OR fuzzy operation. Typically, fuzzy       
expert systems make use of the classical fuzzy 
operation union:

 µA U B(x) = max (µA(x), µB(x))

Similarly, in order to evaluate the conjunction of the 
rule antecedents, we apply the AND fuzzy operation 
intersection:

 µA ∩ B(x) = min (µA(x), µB(x))
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•  Michio Sugeno suggested to use a single spike, a 
singleton, as the membership function of the rule 
 

• A singleton,, or more precisely a fuzzy singleton, 
is a fuzzy set with a membership       function that 
is unity at a single particular point on     the 
universe of discourse and zero everywhere else.

• Fuzzy set whose support is a single point in X 
with:

µA(x) =1  is called fuzzy singleton

Sugeno fuzzy inference



• Sugeno-style fuzzy inference is very similar to the 
Mamdani method.

• Sugeno changed only a rule consequent (resultant). 

• Instead of a fuzzy set, he used a mathematical 
function of the input variable. The  format of the 
Sugeno-style fuzzy rule is

           IF         x is A                                                                   
          AND     y is B                                                        
        THEN   z is f (x, y) 

where x, y and z are linguistic variables; A and B are 
fuzzy sets on universe of discourses X and Y, 
respectively; and f (x, y) is a mathematical function.



The most commonly used zero-order Sugeno 
fuzzy model applies fuzzy rules in the following 
form:

IF           x is A                                                          
              AND      y is B                                                
              THEN   z is k

where k is a constant.  

In this case, the output of each fuzzy rule is 
constant. 

All resultant membership functions are 
represented by singleton spikes.
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z is k1 (0.1) z is k2 (0.2) z is k3 (0.5) ∑
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